66 research outputs found

    TRIPPy: Trailed Image Photometry in Python

    Get PDF
    Photometry of moving sources typically suffers from reduced signal-to-noise (SNR) or flux measurements biased to incorrect low values through the use of circular apertures. To address this issue we present the software package, TRIPPy: TRailed Image Photometry in Python. TRIPPy introduces the pill aperture, which is the natural extension of the circular aperture appropriate for linearly trailed sources. The pill shape is a rectangle with two semicircular end-caps, and is described by three parameters, the trail length and angle, and the radius. The TRIPPy software package also includes a new technique to generate accurate model point-spread functions (PSF) and trailed point-spread functions (TSF) from stationary background sources in sidereally tracked images. The TSF is merely the convolution of the model PSF, which consists of a moffat profile, and super sampled lookup table. From the TSF, accurate pill aperture corrections can be estimated as a function of pill radius with a accuracy of 10 millimags for highly trailed sources. Analogous to the use of small circular apertures and associated aperture corrections, small radius pill apertures can be used to preserve signal-to-noise of low flux sources, with appropriate aperture correction applied to provide an accurate, unbiased flux measurement at all SNR.Comment: 8 Figures, 11 Pages, Accepted to the Astronomical Journa

    Col-OSSOS: Colors of the Interstellar Planetesimal 1I/`Oumuamua

    Get PDF
    The recent discovery by Pan-STARRS1 of 1I/2017 U1 (`Oumuamua), on an unbound and hyperbolic orbit, offers a rare opportunity to explore the planetary formation processes of other stars, and the effect of the interstellar environment on a planetesimal surface. 1I/`Oumuamua's close encounter with the inner Solar System in 2017 October was a unique chance to make observations matching those used to characterize the small-body populations of our own Solar System. We present near-simultaneous g^\prime, r^\prime, and J photometry and colors of 1I/`Oumuamua from the 8.1-m Frederick C. Gillett Gemini North Telescope, and grigri photometry from the 4.2 m William Herschel Telescope. Our g^\primer^\primeJ observations are directly comparable to those from the high-precision Colours of the Outer Solar System Origins Survey (Col-OSSOS), which offer unique diagnostic information for distinguishing between outer Solar System surfaces. The J-band data also provide the highest signal-to-noise measurements made of 1I/`Oumuamua in the near-infrared. Substantial, correlated near-infrared and optical variability is present, with the same trend in both near-infrared and optical. Our observations are consistent with 1I/`Oumuamua rotating with a double-peaked period of 8.10±0.428.10 \pm 0.42 hours and being a highly elongated body with an axial ratio of at least 5.3:1, implying that it has significant internal cohesion. The color of the first interstellar planetesimal is at the neutral end of the range of Solar System grg-r and rJr-J solar-reflectance colors: it is like that of some dynamically excited objects in the Kuiper belt and the less-red Jupiter Trojans.Comment: Accepted to ApJ

    Col-OSSOS: The Colours of the Outer Solar System Origins Survey

    Get PDF
    The Colours of the Outer Solar System Origins Survey (Col-OSSOS) is acquiring near-simultaneous gg, rr, and JJ photometry of unprecedented precision with the Gemini North Telescope, targeting nearly a hundred trans-Neptunian objects (TNOs) brighter than mr=23.6m_r=23.6 mag discovered in the Outer Solar System Origins Survey. Combining the optical and near-infrared photometry with the well-characterized detection efficiency of the Col-OSSOS target sample will provide the first flux-limited compositional dynamical map of the outer Solar System. In this paper, we describe our observing strategy and detail the data reduction processes we employ, including techniques to mitigate the impact of rotational variability. We present optical and near-infrared colors for 35 TNOs. We find two taxonomic groups for the dynamically excited TNOs, the neutral and red classes, which divide at gr0.75g-r \simeq 0.75. Based on simple albedo and orbital distribution assumptions, we find that the neutral class outnumbers the red class, with a ratio of 4:1 and potentially as high as 11:1. Including in our analysis constraints from the cold classical objects, which are known to exhibit unique albedos and rzr-z colors, we find that within our measurement uncertainty, our observations are consistent with the primordial Solar System protoplanetesimal disk being neutral-class-dominated, with two major compositional divisions in grJgrJ color space.Comment: Accepted to ApJS; on-line supplemental files will be available with the AJS published version of the pape

    VLT/SPHERE observations and shape reconstruction of asteroid (6) Hebe

    Full text link
    (6) Hebe is a large main-belt asteroid, accounting for about half a percent of the mass of the asteroid belt. Its spectral characteristics and close proximity to dynamical resonances within the main-belt (the 3:1 Kirkwood gap and the nu6 resonance) make it a probable parent body of the H-chondrites and IIE iron meteorites found on Earth.We present new AO images of Hebe obtained with the high-contrast imager SPHERE (Beuzit et al. 2008) as part of the science verification of the instrument. Hebe was observed close to its opposition date and throughout its rotation in order to derive its 3-D shape, and to allow a study of its surface craters. Our observations reveal impact zones that witness a severe collisional disruption for this asteroid. When combined to previous AO images and available lightcurves (both from the literature and from recent optical observations by our team), these new observations allow us to derive a reliable shape model using our KOALA algorithm (Carry et al. 2010). We further derive an estimate of Hebe's density based on its known astrometric mass

    Twenty years of SpeX: Accuracy limits of spectral slope measurements in asteroid spectroscopy

    Full text link
    We examined two decades of SpeX/NASA Infrared Telescope Facility observations from the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) and the MIT-Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS) to investigate uncertainties and systematic errors in reflectance spectral slope measurements of asteroids. From 628 spectra of 11 solar analogs used for calibration of the asteroid spectra, we derived an uncertainty of 4.2%/micron on slope measurements over 0.8 to 2.4 micron. Air mass contributes to -0.92%/micron per 0.1 unit air mass difference between the asteroid and the solar analog, and therefore for an overall 2.8%/micron slope variability in SMASS and MITHNEOS designed to operate within 1.0 to 1.3 air mass. No additional observing conditions (including parallactic angle, seeing and humidity) were found to contribute systematically to slope change. We discuss implications for asteroid taxonomic classification works. Uncertainties provided in this study should be accounted for in future compositional investigation of small bodies to distinguish intrinsic heterogeneities from possible instrumental effects.Comment: 15 pages, 11 figures, accepted for publication in ApJ

    Col-OSSOS: The Distribution of Surface Classes in Neptune's Resonances

    Full text link
    The distribution of surface classes of resonant trans-Neptunian objects (TNOs) provides constraints on the protoplanetesimal disk and giant planet migration. To better understand the surfaces of TNOs, the Colours of the Outer Solar System Origins Survey (Col-OSSOS) acquired multi-band photometry of 102 TNOs, and found that the surfaces of TNOs can be well described by two surface classifications, BrightIR and FaintIR. These classifications both include optically red members and are differentiated predominantly based on whether their near-infrared spectral slope is similar to their optical spectral slope. The vast majority of cold classical TNOs, with dynamically quiescent orbits, have the FaintIR surface classification, and we infer that TNOs in other dynamical classifications with FaintIR surfaces share a common origin with the cold classical TNOs. Comparison between the resonant populations and the possible parent populations of cold classical and dynamically excited TNOs reveal that the 3:2 has minimal contributions from the FaintIR class, which could be explained by the ν8\nu_8 secular resonance clearing the region near the 3:2 before any sweeping capture occurred. Conversely, the fraction of FaintIR objects in the 4:3 resonance, 2:1 resonance, and the resonances within the cold classical belt, suggest that the FaintIR surface formed in the protoplanetary disk between 34.6 and 47 au, though the outer bound depends on the degree of resonance sweeping during migration. The presence and absence of the FaintIR surfaces in Neptune's resonances provides critical constraints for the history of Neptune's migration, the evolution of the ν8\nu_8, and the surface class distribution in the initial planetesimal diskComment: 19 pages, 8 figures. in Press at PS

    The Debiased Compositional Distribution of MITHNEOS : Global Match between the Near-Earth and Main-belt Asteroid Populations, and Excess of D-type Near-Earth Objects

    Get PDF
    We report 491 new near-infrared spectroscopic measurements of 420 near-Earth objects (NEOs) collected on the NASA InfraRed Telescope Facility as part of the MIT-Hawaii NEO Spectroscopic Survey. These measurements were combined with previously published data from Binzel et al. and bias-corrected to derive the intrinsic compositional distribution of the overall NEO population, as well as of subpopulations coming from various escape routes (ERs) in the asteroid belt and beyond. The resulting distributions reflect well the overall compositional gradient of the asteroid belt, with decreasing fractions of silicate-rich (S- and Q-type) bodies and increasing fractions of carbonaceous (B-, C-, D- and P-type) bodies as a function of increasing ER distance from the Sun. The close compositional match between NEOs and their predicted source populations validates dynamical models used to identify ERs and argues against any strong composition change with size in the asteroid belt between similar to 5 km and similar to 100 m. A notable exception comes from the overabundance of D-type NEOs from the 5:2J and, to a lesser extend, the 3:1J and nu (6) ERs, hinting at the presence of a large population of small D-type asteroids in the main belt. Alternatively, this excess may indicate preferential spectral evolution from D-type surfaces to C and P types as a consequence of space weathering, or point to the fact that D-type objects fragment more often than other spectral types in the NEO space. No further evidence for the existence of collisional families in the main belt, below the detection limit of current main-belt surveys, was found in this work.Peer reviewe

    Col-OSSOS: Z-Band Photometry Reveals Three Distinct TNO Surface Types

    Get PDF
    Several different classes of trans-Neptunian objects (TNOs) have been identified based on their optical and near-infrared colors. As part of the Colours of the Outer Solar System Origins Survey, we have obtained gg, rr, and zz band photometry of 26 TNOs using Subaru and Gemini Observatories. Previous color surveys have not utilized zz band reflectance, and the inclusion of this band reveals significant surface reflectance variations between sub-populations. The colors of TNOs in grg-r and rzr-z show obvious structure, and appear consistent with the previously measured bi-modality in grg-r. The distribution of colors of the two dynamically excited surface types can be modeled using the two-component mixing models from Fraser \& Brown (2012). With the combination of grg-r and rzr-z, the dynamically excited classes can be separated cleanly into red and neutral surface classes. In grg - r and rzr - z, the two dynamically excited surface groups are also clearly distinct from the cold classical TNO surfaces, which are red, with grg-r\gtrsim0.85 and rzr-z\lesssim0.6, while all dynamically excited objects with similar grg-r colors exhibit redder rzr-z colors. The zz band photometry makes it possible for the first time to differentiate the red excited TNO surfaces from the red cold classical TNO surfaces. The discovery of different rzr-z colors for these cold classical TNOs makes it possible to search for cold classical surfaces in other regions of the Kuiper belt and to completely separate cold classical TNOs from the dynamically excited population, which overlaps in orbital parameter space.Comment: 11 pages, 2 figures, Accepted to A

    Spectral evolution of dark asteroid surfaces induced by space weathering over a decade

    Full text link
    The surface of airless bodies like asteroids in the Solar System are known to be affected by space weathering. Experiments simulating space weathering are essential for studying the effects of this process on meteorite samples, but the problem is that the time spent to reproduce space weathering in these experiments is billions of times shorter than the actual phenomenon. In December 2010, the T-type asteroid 596 Scheila underwent a collision with a few-tens-of-meters impactor. A decade later, there is an opportunity to study how the surface layer of this asteroid is being altered by space weathering after the impact. To do so, we performed visible spectrophotometric and near-infrared spectroscopic observations of 596 Scheila. The acquired spectrum is consistent with those observed shortly after the 2010 impact event within the observational uncertainty range. This indicates that the surface color of dark asteroids is not noticeably changed by space weathering over a 10-year period. This study is the first to investigate color changes due to space weathering on an actual asteroid surface in the Solar System. Considering that fresh layers are regularly created on asteroid surfaces by collisions, we suggest a genetic link between D/T-type and dark (low albedo) X-complex asteroids and very red objects such as 269 Justitia, 732 Tjilaki (and 203 Pompeja). New observations show that 203 Pompeja has a X-type-like surface, with some local surface areas exhibiting a very red spectrum.Comment: 16 pages, 9 figures, 2 tables, Accepted for publication in ApJ Letter
    corecore